In the 60s, Grace Slick of Jefferson Airplane memorialized the expression “Feed Your Head!” And now, a half-century later, it’s come to full realization with the advent of scientifically-validated “brain nutrition”! Check out this article from our friends at Klaire Labs for more on three key nutrients to support your brain health.

—Dr. Hoffman

(This article contains content provided by one of our trusted sponsors.)

The brain makes up only two percent of a person’s body weight, yet it consumes roughly 20 percent of the body’s energy when at rest. Many nutrients have been shown to support optimal neurologic and cognitive function. In addition to the well-known omega-3 fatty acid DHA, other nutrients have demonstrated efficacy in supporting cognitive function. Here are snapshots of three:

Phosphatidylserine
Phosphatidylserine (PS) is a phospholipid that occurs naturally in the body. Although it is less abundant in the body than other phospholipids (like phosphatidylcholine), it has critical functions in several biological areas, such as blood clotting, cellular turnover, and cell-to-cell communication.[1] As with other phospholipids, PS is a critical component in the structure of cell membranes, particularly nerve cells in the brain.[2]

Phospholipids move within the fluid mosaic of cell membranes. As the major phospholipid in the brain, PS is able to cross the blood-brain barrier, making it directly active in the brain after oral supplementation.[3] Once in the brain, PS exerts a beneficial influence over brain structures and systems, including neurotransmitters like serotonin and dopamine.*[4] [5] [6]

Several clinical trials have shown that PS supplementation supports cognitive function.* In one controlled trial, thirty six children, aged 4-14 years, who were experiencing attention-related issues were given 200 mg/d of PS or placebo for two months.[7] PS supplementation resulted in significant improvements in attention, impulsive movement, and short-term auditory memory as compared with placebo. PS was well-tolerated and showed no adverse effects.

Phosphatidylserine has further been shown to support healthy endocrine and adrenal responses to mental stress.* In a double-blind study, PS (400 mg, 600 mg or 800 mg/d) was administered to healthy women and men 20 to 45 years old.[8] In the groups receiving 400 mg/d of PS only, researchers observed a beneficial modulation of stress and stress hormones. There was also a positive effect on emotional responses at 400 mg/d. The researchers thought that the activity of PS had to do with modulating the communication axis between the hypothalamus, pituitary, and adrenal glands, which coordinate to regulate stress in the body.*

Phosphatidylserine also supports cognitive function in aging individuals.* In a clinical trial, 70 elderly subjects with cognition complaints experienced transient improvement of cognitive and memory function, as well as improvements in electrical measurements of brain function.[9]*

Acetyl L-Carnitine

Acetyl L-Carnitine (ALC) is needed in the body for the transport of fatty acids. It is derived from the amino acid L-carnitine, and has been shown to support healthy cognitive function, concentration and focus, enhance nerve cell function, regenerate peripheral nerve cells, provide antioxidant protection, and promote cellular energy production.* It also plays a major role in the healthy functioning of mitochondria, the cell organelles responsible for energy production.*[10] Acetyl L-carnitine supports cardiovascular health by providing antioxidant protection and promoting cellular energy production, and has been shown to support the reproductive system.*[11] [12]

Like phosphatidylserine, acetyl-L-carnitine is able to cross the blood-brain barrier.*[13] [14] Although its precise mechanisms of action are unknown, research suggests it benefits nerve cell transmission and energy metabolism.*[15] Animal research suggests a protective effect of ALC on aging neurons,[16] and that this effect might be due in part its antioxidant activity.*[17]

Most importantly, several clinical trials have demonstrated that ALC supplementation preserves and improves overall cognitive function in the elderly. In a controlled clinical trial, ALC was given to elderly individuals with mild cognitive
After 45 days of supplementation at 1,500 mg/d, significant improvements in cognitive function (especially memory) were observed. Another large clinical trial of ALC in a similar group of elderly individuals found that 1,500 mg/d for 90 days significantly improved memory, mood, and responses to stress. The favorable effects lasted at least a month after treatment was discontinued. Other controlled and open-label clinical trials have corroborated these findings.

Citocline

Citocline (also known as CDP-choline) a compound that occurs in the body as it makes phosphatidylcholine. Citocline protects cell membranes by improving the presence and activity of other phospholipids. It has been shown in preclinical and clinical research to support cerebrovascular health. Like PS and ALC, citocline crosses the blood-brain barrier and, in addition to its role in supporting synthesis of phospholipids, supports sphingomyelin, a component of the sheath that encases nerve cell axons. Citocline also increases neurotransmitters such as norepinephrine, acetylcholine, and dopamine in the brain and central nervous system. Because of these effects, citocline has also been used to support motor functions of the nervous system that control voluntary and involuntary movements.

Initially introduced to support brain circulation and recovery, citocline is marketed as a prescription drug in Japan, Spain, France and Italy and as a dietary supplement in USA. A great many studies have documented its activity in the body, its absorption and metabolism, and its safety; Citocline has virtually no known side effects.

In the years since its introduction, citocline has been the subject of numerous clinical trials and reviews. In human trials, citocline is perhaps best known to support cognitive function in susceptible elderly individuals with normal brain circulatory function. It is understood in part to accomplish this by increasing energy reserves and utilization, as well as increasing the amount of essential phospholipid membrane components needed to make and maintain neurons. As a dietary supplement, citocline appears useful for supporting the structural integrity and functionality of the nerve cells in the brain.

Citocline has been studied in tens of thousands of subjects and has demonstrated beneficial effects in brain blood flow, recovery from brain trauma, promoting oxygen supply to brain tissue, cognition and motor function, learning and memory, intake of substances of abuse, and visual acuity. Citocline has proven to be a valid approach to nutritional supplementation by individuals with memory problems stemming from cerebrovascular function. An analysis of the available clinical studies performed with this compound confirmed that citocline restores cell lipid structures and some neurotransmitter functions. Another analysis found positive effect on memory and behavior in at least the short to medium term (2-3 months). Authors concluded that citocline supplementation improved cognitive function and protected cell membranes by accelerating phospholipid synthesis, and reducing brain cellular stresses.

Citocline is among the best-studied nutrients for supporting memory function and healthy cognition. It provides the precursors for synthesis of phosphatidylcholine, a major component of cellular membranes in brain tissue. It enhances communication between brain nerve to support visual function, helps protect brain structures from oxidation and free radicals, supports brain performance by enhancing metabolism and healthy brain activity, assists in sustaining healthy mitochondria in the brain,
supports healthy brain metabolism by nourishing and maintaining brain cell phospholipids, and helps maintain normal levels of neurotransmitters that regulate memory, cognitive function, motor activity and brain blood flow.*

[12] Goa KL, Brogden A. L-carnitine a preliminary review of its pharmacokinetics, and its therapeutic use in ischaemic cardiac disease and primary and secondary carnitine deficiencies in relationship to its role in

